168 research outputs found

    Initial condition for hydrodynamics, partonic free streaming, and the uniform description of soft observables at RHIC

    Full text link
    We investigate the role of the initial condition used for the hydrodynamic evolution of the system formed in ultra-relativistic heavy-ion collisions and find that an appropriate choice motivated by the models of early-stage dynamics, specifically a simple two-dimensional Gaussian profile, leads to a uniform description of soft observables measured in the Relativistic Heavy-Ion Collider (RHIC). In particular, the transverse-momentum spectra, the elliptic-flow, and the Hanbury-Brown--Twiss correlation radii, including the ratio R_out/R_side as well as the dependence of the radii on the azimuthal angle (azHBT), are properly described. We use the perfect-fluid hydrodynamics with a realistic equation of state based on lattice calculations and the hadronic gas at high and low temperatures, respectively. We also show that the inclusion of the partonic free-streaming in the early stage allows to delay the start of the hydrodynamical description to comfortable times of the order of 1 fm/c. Free streaming broadens the initial energy-density profile, but generates the initial transverse and elliptic flow. The data may be described equally well when the hydrodynamics is started early, or with a delay due to partonic free-streaming.Comment: 4 pages, 4 figure

    Hydrodynamic predictions for Pb+Pb collisions at 2.76 TeV

    Full text link
    Using the newest data for pp scattering at the CERN Large Hadron Collider (LHC) combined with the Glauber model, we make hydrodynamic predictions for the soft hadronic observables planned to be measured in the forthcoming Pb+Pb collisions at 2.76 TeV

    Size fluctuations of the initial source and the event-by-event transverse momentum fluctuations in relativistic heavy-ion collisions

    Full text link
    We show that the event-by-event fluctuations of the transverse size of the initial source, which follow directly from the Glauber treatment of the earliest stage of relativistic heavy-ion collisions, cause, after hydrodynamic evolution, fluctuations of the transverse flow velocity at hadronic freeze-out. This in turn leads to event-by-event fluctuations of the average transverse momentum, p_T. Simulations with GLISSANDO for the Glauber phase, followed by a realistic hydrodynamic evolution and statistical hadronization carried out with THERMINATOR, lead to agreement with the RHIC data. In particular, the magnitude of the effect, its centrality dependence, and the weak dependence on the incident energy are properly reproduced. Our results show that bulk of the observed event-by-event p_T fluctuations may be explained by the fluctuations of the size of the initial source.Comment: 5 pages, 4 figures, version accepted in PR
    corecore